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Three-point velocity correlation functions in two-dimensional forced turbulence
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We present a simple exact formula for three-point velocity correlation functions in two-dimensional turbu-
lence which is valid at all scales and which interpolates between the direct and inverse cascade regimes. As
expected, these correlation functions are universal in these extreme regimes. We also discuss the effects of
anisotropy and friction[S1063-651X%99)06111-5

PACS numbeps): 47.10+g, 47.27.Gs

The aim of this paper is to set down an explicit formula In the (IR) inverse cascade, scaling arguments lead to
for three-point velocity correlation functions in two- Kolmogorov's spectrum, wittE(k)~ e%3k~5? for the en-
dimensiona(ZD) turbulence.. See Eg&9) below and its con- ergy and @u)(r)w(:r)l/s for the variation of the velocity
sequences. This formula differs from the_ L_Jsual Kolmogorovon scaler. In the (UV) direct cascade, scaling arguments
formula, (cf. e.g., Ref[1]), by the fact that it incorporates the . , . /3,3
existence of two inertial ranges which correspond to the ind've Kraichnan's S;Ectrum Witk (k) ~ €, k™" for the en-
verse energy cascade and the direct enstrophy cascade, gy and Qu)(r)~(e,r3)* for the velocity variation.
spectively. Although expected on scaling ground, this for- Of course the direct and inverse cascade have been exten-
mula, and its simple proof, was surprisingly never spellecsively analyzed, both numericalljsee e.g., Ref3] and ref-
out in the turbulent literature. It is nevertheless one of theerences therein for atincomplet¢ sample of referencés
rare exact results on 2D turbulence. We thus feel that it wagnd theoreticallysee e.g. Refd4,5] and references therein
worth making it more public. This formula, and its large and for a few relevent references, some of which discussing loga-
short distance behaviors, are presented in Eg®.and (16) rithmic corrections to Kraichnan’s scalingMore recently,
below. the inverse cascade has been observed experimentally, as

described in Refl.6]. Within experimental precision it shows

no deviation from Kolmogorov's scaling.
|. KRAICHNAN'S SCALING THEORY

A special feature which distinguishes two-dimensional Il. MODEL AND ITS HYPOTHESIS
from three-dimensional fluid mechanics is the conservation As usual, to model turbulent flows statistically, we con-
of vorticity moments in the inviscid limit. As first pointed sider the Navier-Stokes equation with an extra forcing term.
out by Kraichnan in a remarkable pade, this opens the | et ul(x,t) be the velocity field for an incompressible fluid,

possibility for quite different scenarios for the behavior of yv.y=0. In two dimensions the incompressibility implies
turbulent flows in two and three dimensions. In two dimen'that U(X,t) derives from a stream functio® such thatuk

sions the inviscid Navier-Stokes equation admits two qua— €9, ® with € the antisymmetric tensor. The Navier-
dratic conserved quantities—the enerfu?/2) and the en-  Siockes equation reads

strophy [ (w?/2)—with u the velocity andw the vorticity. As

argued by Kraichnan, if energy and enstrophy density are aul+(u-V)ul—pV2ul= - Vip+fl, (1)
injected at a scald;, with respective rates and e,

=el; 2, the turbulent system should react such that the enwith p the pressure anél(x,t) the external force such that
ergy flows toward large scales and enstrophy toward smalV - f=0. We choose the force to be Gaussian, white noise in
scales. As this energy flow is opposite to the one involved irfime, with zero mean and two-point function:

Kolmogorov’s picture for 3D turbulence, one usually refers , ,

to the infrared energy flow as the inverse cascade and to the (H(x,0f¥y,s))=ClK(x—y) &(t—s), 2
ultraviolet enstrophy flow as the direct cascade. The fact that

energy has to escape to the large scales may be understoatiereC’*(x), with VIC/¥(x)=0, is a smooth function vary-
from the fact that in the absence of forcing the time variationing on a scald.;, quickly decreasing at infinity and regular
of the energy is, [ (u%/2)=— v (w?/2), with v the viscos- at the origin. The scale; represents the injection length. We
ity. It thus vanishes in the inviscid limit— O if the enstro-  shall assume translation, rotation, and parity invariance, un-

phy remains finite and the energy cannot be dissipated aéss otherwise specified. L&(x)=trC(x). Its Taylor ex-

small scales. pansion at the origin will be denoted és{x)=26—:wr2/2
+..., with r?=x**. The transversality condition
J K () — A_wkak i K( o) — ok
*Electronic address: dbernard@spht.saclay.cea.fr vic Exg 0 ensures thlatC v*e Wlth ®. (X) = ex -
fLaboratoire de la Direction des Sciences de la Matigu Com- ~ — €wX'T/8+ - - - at short distances. A physical interpretation
misariat al’Energie Atomique. of e ande,, will be given later.
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The vorticity w, with w=¢j;d;u;, is transported by the Therefore, the third term in Ed5) also vanishes. This im-
fluid: plies that in the inviscid limit the mean energy increases with
time according to
dw+(u-V)o—vVZie=F, 3
(3] o
with F=¢;;0;f;. The correlation function of the vorticity % 2/, ZC(O) € ™
forcing term is thus
Thus (u?/2),_,=e€t up to a constant, and is indeed the
(FIX,DF(y,s))=G(x—y)é(t—s) (4)  energy injection rate. This is simply the obvious statement
that in the absence of energy dissipation, and/or in the ab-
with G=—-V2C. In particular,G(O)zZ?W. The fact that sence of friction or other processes by which the energy may
the correlation function of the vorticity forcing is a gradiant €scape, all energy injected into the system is transfered to the
will have physical consequences. Physically E3). means fluid. It is expected to be transfered to the mode with the
that for smooth solutions any power of the vorticity, and insmallest possible momentum, the so-called conderi2ite
particular the enstrophf(w?/2), is conserved in the absence In particular, Eq.(7) shows that in absence of energy dissi-
of viscosity and forcing. pation a stationary state cannot be reached, although struc-

Since the inviscid limit is of course not under analytical ture functions may converge at large times. This is one im-
control, we have to make a few hypotheses which encodgortant difference between 2D and 3D turbulence.
Kraichnan’s scenario of inverse and direct cascades. These Let us now assume that the two-point structure function is
hypotheses are the followingi) the velocity correlation Stationary, i.e.,d((Au)?*(x))=0, [hypotheses(ii)]. From
functions are assumed to be smooth at finite viscosity, an&d- (5) one obtains, in the inviscid limit,
correlations of the velocitywithout derivatives but at points Lok ‘ 5 — .
coinciding or not exist in the inviscid limit; (i) Galilean 3 Vi{ (AU (X) (AU)“(X)) = o= 26— C(X). (8)
invariant correlation functions, and in particular the velocity . . . o . .
structure functions which are correlations of differences Oi]ntegratlng this using parity invariance gives
the velocity field, are stationary; artdi ) in agreement with
Kraichnan's picture, we demand that energy dissipative
anomalies(but not enstrophy dissipative anomajid®e ab-
sent.

The two first hypotheses are standard in the statistic
approach to turbulence, while the third is special to two di-
mensions. It follows by demanding that the enstrophy den
sity Q= w?/2 is finite in the inviscid limit, since the mean
enstrophy density times the viscosity is equal to the mea
dissipation ratep(Q)=(v/2){(Vu)-(Vu)).

(AU () (AU)Z(X)) == 2(ex*— BK(x)), (9)

with V,-0(x)=C(x). Equation(9) together with Eq.(12)
elow fully determine the three point velocity correlation.
Ithough simple to derive, this equation seems not to have
appeared in the existing literature.

Equation(9) in particular shows that the inverse energy
I;?ascade takes place only if there is no dissipation anomaly,
and thus only if the non-Galilean invariant velocity correla-
tion functions do not reach a stationary stétethe absence
of friction). Of course this is also a direct consequence of the
. VELOCITY CORRELATIONS physical fact that the energy condenses into the mode of

Let us look at the two-point velocity correlation function smallest pOS,Sible r_nomemtum. AS exp_ected, @hyields to
(u(x)-u(0)). As is well known,(cf. e.g., Ref[1]), it satis- Kolmogorov’s scaling at large scale, since th@¥x) van-

fies the following equation at finite viscosity: ishes, and Kraichnan’s scaling at small scale sifee
—0X(x))~r? at short distance. But one can be a little more
F(UOU(0)) = 3V (AU (%) (Au)*(x)) precise.
+20((VUu)(x)- (Vu)(0))=C(x). (5) IV. VORTICITY CORRELATIONS

. . Lo We now establish a formula for a mixed correlation func-
Here and in the following we shall denote velocity differ- .. . . - : .
tion involving the vorticity and the velocity. Assuming that

k — .k _ .k H
ences by Qu )(>'<)_u (x)~u’(0). Equation (5) assumes tFe structure functions of the velocity reach a stationary state
translation invariance, and uses the fact that the externa

force is Gaussian and white noise in time. Thanks to the quidmplles that correlations of the vorticity also become station-

) . . . ary. The stationarity condition for the two-point vorticity
incompressibility the pressure drops out from this equat|onfunctions ie.a(w(X)o(y))=0, implies
The strategy consists of taking various limits of Ef) in e ol wX)oly » Imp

varic_Jus_ or_der_s._Let us _tak_e f_irst the limit-0 follqwed by _ %V)lx(Auk)(X) (Aw)2(X))+20{Vo(X) Va(0))
the inviscid limit. In this limit the second term in E¢5)
vanishes due to the assumed smoothness of the correlation =G(x), (10

functions[hypothesis(i)]. Recall now hypothesisiii) con-
cerning the absence of energy dissipation. It in particulawith (Aw)(x)=w(x)—w(0). As for the velocity correla-
means that tions, let us first take the limit of coincident poirt-0 at
finite viscosity. The first term in Eq10) then vanishes by
lim lim »((Vu)(x)-(Vu)(0))=0. (6)  the hypotheses on the smoothness of the correlation func-
»—0 x—0 tions at finitev. Then taking the inviscid limit leads to
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lim »{(Vw)?(x))= %G(0)=:W. (1) The coefficiente,, is equal to the mean enstrophy dissipation
v—0 rate. Thus, as expected, the three-point velocity functions,
which depend only on the enstrophy injection rate, are uni-
This is just the usual statement on enstrophy dissipativeersal in the direct cascade. Equatidd) may be called the
anomaly. It is equal to the enstrophy dissipation rate and the +1/8 law” of the direct cascade.
enstrophy injection rate. Let us now take the limits in the Consider now the large distance behavior in which the
reversed order, the inviscid limit first. In that case the secon&raichnan’s inverse cascade takes place, i.e., scalk; .

term of Eq.(10) drops out, and one obtains There, Taylor expanding Eq9) yields
—3VX(AU () (Aw)A(X)),— o= G(X). (AU () (AU)2(X))=2ex*.
Assuming isotropy and parity invariance, this gives There are two possible terms for the three-point functions,

(8xK+ 8%+ 85x)) and «'x/x¥)/r2, whose coefficients

cannot be completely fixed using only E@). But, again,
(r) these will be fixed by looking at the vorticity correlation

functions[Eg. (12)]. One then obtains, fax— <,

((AUM(X)(Aw)?(x)) :Zx_k @
v=0"%r L dr

=—2e,X+0(r?d). (12 .
Thus this correlation is universal in the)V) direct cascade (AU ) (AU () (AU (x))= 5(5"Xk+ X+ %),
regime. Its behavior and large scale depends on the way the (15)
forcing decreases at infinity. However, the fact that these

correlations decrease faster th@gl/r) at infinity is linked  \yith ¢ the mean energy injection rate. Of course this gives

to the fact the vorticity forcing correlation is a gradiant. The ina « 4 3/2 |aw” for the longitudinal statistics in the inverse
ultraviolet behaviofEqg. (12)] was also described in Ré6]. cascade:

This equation will be used to fix the coefficients of the in-

frared and ultraviolet expansions of the three-point velocity 3

function left undetermined by Ed9). But Eq. (12) alone <(Au)ﬁ>=3<(Au)”(Au)E>z+—r. (16)
would not have been enough to determine these asymptotic 2

expansions. . ) )
This law and Kolmogorov’s scaling, as well as the existence

of a condensate in which the energy accumulates were ex-
perimentally verified in Ref6].
Let us first consider the short distance behavior in which
the Kraichnan'’s direct cascade takes place. This corresponds v|. INFLUENCE OF ANISOTROPY AND PARITY
to a scale much smaller than the injection lengtsL;. SYMMETRY BREAKING
There, Taylor expanding E@9) gives

V. SCALING IN THE DIRECT AND INVERSE CASCADES

Anisotropy is irrelevent both in the ultraviolet and in the
infrared. Indeed, let us model anisotropy by incorporating
higher spin components in the forcing correlation function

Assuming isotropy and parity invariance, the three-pointc (x), assuming that they are still regular at the origin and

. ; . 2 . decrease at infinity. These components will be subdominant
functions will be linear combinations of terms proportional . : : ; .
ik ok 1 sikyi iviye2 in Eq. (8) in both the ultraviole{since the spim component
to X' xIx¥ or (8''x*+ 8%+ 8x))r2. Among these two pro- . n . : .
. . - . will behave ag") and the infraredsince they also vanish at
portionality coefficients only one of them could be fixed us-

! SR infinity).
ing Eqg. (9) only. However, the other coefficient is fixed by . i
the exact result for correlation functions mixing the vorticity tioSuppose now that parity symmetry may be broken. Equa

. . n (9) is still valid (since it only assumes translation invari-
and the veloglty, seze EcﬁlZ%. [One should_ use the rela_tlon ancé )except thatgk(x) is d{:‘termined up 100k Ok
3<(Auz)(A:"). >:4‘92<I(Auz) ),dyvhtere uz+|_s th?rh\./elct)ﬁ'ty +€41g;E(r). This may change the ultraviolet scaling of the
;?Vrggogﬁz 'g complex coordinates=x+iy.] This then transverse velocity correlations but not the scaling of the

1 — 1

longitudinal Correlations<(Au)ﬁ>, although the amplitude
may be modified.

(AU (X)(AU)2(x))=F ex¥r2,

((AUH OO (AU () (AU ()

€W, ik cikei Kiois 2 ik VII. INFLUENCE OF FRICTION
= —(("x*+ X'+ 5% ) x“— 2x'x! XX). (13 . . _
8 In physical systems the infrared energy cascade will ter-
o ) ) minate at the largest possible scale at which the energy will
For the transverse and longitudinal correlations, this beascape. This could be mimicked by introducing a friction

comes term in the Navier-Stokes equation, which then becomes

<(Au)f>:<(Au)”(Au)f>z+% ri. (14) atui+(u.V)uJ—Vv2uJ+%uiz—vip+fi, (17)
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with 7 the friction relaxation times>0. Friction brings an-
other inviscid characteristic length; into the problem:L;

PORTS 6187

other words, Kraichnan’s scaling of the three-point function
is robust to friction in the direct cascade, although the am-

~ %212 |t increases as the friction is reduced, and one may!itide may change. _ _
suppose thak;<L;. This is the length at which the energy ~ More precisely, suppose thél is finite and nonvanish-
is extracted. The friction term dominates over the advectiodnd. Then the scaling formulél3) for the three-point func-

term at scales larger thdry. So the direct cascade should
take place at distances<L;<L;, and the inverse cascade at
distanced ;<x<<L;.

tion still holds, but withe,, replaced by &,7—)/7. Recall
that it is likely that (,7—€)/7 is equal to the enstrophy
dissipation rates,,, meaning that in the presence of friction

Under the same hypothesis as before, the mean energe simply has to replace the injection rate by the dissipation

density relaxes in the inviscid limit according tQ(u?/2)
+(1/7)(u?)=e. It therefore reaches a stationary limit with

(u?)=er. The stationarity of the two-point structure func-
tion, i.e.,d,{(Au)?(x))=0, then gives, in the inviscid limit,

1« k 2 1 2 il
S VAU (AWZx) + —(Aw*(x)) =2e=C(X).
(18)
Similarly, the stationarity of the vorticity correlations gives
an equation similar to Eq10), but with an extra term rep-
resenting the friction. As for the case without friction, let us

first take the limitx—0 at finite viscosity, and then the in-
viscid limit. Let us denote the enstrophy injection rate by

ew=3G(0) and the enstrophy dissipation rate hy,
=lim,_o»{(Vw)?(x)). One then obtains{w?)=7(e,
— €), With (0?)=lim,_ o(®?(x)). This simply means that

rate in formula(13). Moreover, the finiteness of the vorticity
two-point function at coincident points also implies that
((Au)?(x))=Q/2r?, since VZ((Au)?(x))= 2(w(x)(0))-
This scaling may be broken only if Q
=lim,_ o(w(X)w(0)),—o vanishes. It is worth specifying in
which scale domain this behavior will be valid. At finite
viscosity, there are various ultraviolet characteristic lengths;
the usual dissipative lengthg=1%4"* and | 4= "%, *®,
and another friction length= »'>7/2 above which friction
dominates over dissipation. Sincg<l,=1; in the limit we

are consideringy— 0 andr fixed, this scaling will be valid
for ld:|f<X<Li .

Let us now consider distances larger than the injection
lengthL; but smaller than the friction length;. Then 2=
—C(x)=2¢, and the positivity argument cannot be applied.
However, unless miraculous cancellations occur between the
two terms on the left-hand side of E¢L8) (which would

the enstrophy density is equal to the difference of the enstrgnean that the domains in which ad\{(ection 0f2ffiCti0n domi-
phy injection and the enstrophy dissipation rates times th&ate intertwing the correlation((Au®)(x)(Au)*(x)) will

friction relaxation time. In particular, it is finite, so is the
enstrophy density. As a consequence the vorticity two-poin
correlation functior{ w(x) w(0)) will stay finite since it is
bounded by(w?). Taking the limit in reversed order, first
v—0, yields the inviscid stationary equation:

1 k k 2 2
=5 VAU (A0)2(0)) + —(0()@(0))=G(x). (19

Let us look at small distances in which the friction should
be irrelevent. Lef) =lim,_,o(w(X) w(0)), which is expected
to be equal tor(e, — €,), although nothing prevents it from

being different. Since(<rte,, the second term on
the left-hand side of EqQ.(19) cannot dominate, and
VE(AUR)(X) (Aw)?(x))=const asx—0. This implies that
the velocity three-point functioq(Au)®) scale asr3. In

still scale ag. Clearly this argument is less robust than the
pne used for the short distance analysis.

VIIl. CONCLUSIONS

Besides giving the expected formula for the three-point
velocity correlation functions, this short proof also indicates
that if the inverse cascade takes place, as experimentally
verified, then, in absence of friction, the non-Galilean invari-
ant velocity correlation functions do not become stationary,
although structure functions do. However, it gives no hints
on how to decipher the behavior of the vorticity, one of the
main challanging problems of two dimensional turbulence.
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