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Three-point velocity correlation functions in two-dimensional forced turbulence
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We present a simple exact formula for three-point velocity correlation functions in two-dimensional turbu-
lence which is valid at all scales and which interpolates between the direct and inverse cascade regimes. As
expected, these correlation functions are universal in these extreme regimes. We also discuss the effects of
anisotropy and friction.@S1063-651X~99!06111-5#
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The aim of this paper is to set down an explicit formu
for three-point velocity correlation functions in two
dimensional~2D! turbulence. See Eqs.~9! below and its con-
sequences. This formula differs from the usual Kolmogo
formula,~cf. e.g., Ref.@1#!, by the fact that it incorporates th
existence of two inertial ranges which correspond to the
verse energy cascade and the direct enstrophy cascad
spectively. Although expected on scaling ground, this f
mula, and its simple proof, was surprisingly never spel
out in the turbulent literature. It is nevertheless one of
rare exact results on 2D turbulence. We thus feel that it w
worth making it more public. This formula, and its large a
short distance behaviors, are presented in Eqs.~14! and~16!
below.

I. KRAICHNAN’S SCALING THEORY

A special feature which distinguishes two-dimension
from three-dimensional fluid mechanics is the conserva
of vorticity moments in the inviscid limit. As first pointed
out by Kraichnan in a remarkable paper@2#, this opens the
possibility for quite different scenarios for the behavior
turbulent flows in two and three dimensions. In two dime
sions the inviscid Navier-Stokes equation admits two q
dratic conserved quantities—the energy*(u2/2) and the en-
strophy*(v2/2)—with u the velocity andv the vorticity. As
argued by Kraichnan, if energy and enstrophy density
injected at a scaleLi , with respective ratesē and ēw

. ēLi
22 , the turbulent system should react such that the

ergy flows toward large scales and enstrophy toward sm
scales. As this energy flow is opposite to the one involved
Kolmogorov’s picture for 3D turbulence, one usually refe
to the infrared energy flow as the inverse cascade and to
ultraviolet enstrophy flow as the direct cascade. The fact
energy has to escape to the large scales may be under
from the fact that in the absence of forcing the time variat
of the energy is] t*(u2/2)52n*(v2/2), with n the viscos-
ity. It thus vanishes in the inviscid limitn→0 if the enstro-
phy remains finite and the energy cannot be dissipate
small scales.
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In the ~IR! inverse cascade, scaling arguments lead
Kolmogorov’s spectrum, withE(k);ē2/3k25/3 for the en-
ergy and (Du)(r );( ēr )1/3 for the variation of the velocity
on scaler. In the ~UV! direct cascade, scaling argumen
give Kraichnan’s spectrum withE(k);ēw

2/3k23 for the en-

ergy and (Du)(r );( ēwr 3)1/3 for the velocity variation.
Of course the direct and inverse cascade have been e

sively analyzed, both numerically,@see e.g., Ref.@3# and ref-
erences therein for an~incomplete! sample of references#,
and theoretically~see e.g. Refs.@4,5# and references therei
for a few relevent references, some of which discussing lo
rithmic corrections to Kraichnan’s scaling!. More recently,
the inverse cascade has been observed experimentall
described in Ref.@6#. Within experimental precision it show
no deviation from Kolmogorov’s scaling.

II. MODEL AND ITS HYPOTHESIS

As usual, to model turbulent flows statistically, we co
sider the Navier-Stokes equation with an extra forcing te
Let uj (x,t) be the velocity field for an incompressible fluid
“•u50. In two dimensions the incompressibility implie
that u(x,t) derives from a stream functionF such thatuk

5ek j] jF with ek j the antisymmetric tensor. The Navie
Stockes equation reads

] tu
j1~u•“ !uj2n“2uj52“

j p1 f j , ~1!

with p the pressure andf (x,t) the external force such tha
“• f 50. We choose the force to be Gaussian, white nois
time, with zero mean and two-point function:

^ f j~x,t ! f k~y,s!&5Cjk~x2y! d~ t2s!, ~2!

whereCjk(x), with “

jCjk(x)50, is a smooth function vary-
ing on a scaleLi , quickly decreasing at infinity and regula
at the origin. The scaleLi represents the injection length. W
shall assume translation, rotation, and parity invariance,
less otherwise specified. LetĈ(x)[trC(x). Its Taylor ex-
pansion at the origin will be denoted asĈ(x)52ē2 ēwr 2/2
1•••, with r 25xkxk. The transversality condition
“

jCjk(x)50 ensures thatĈ5“

kQk with Qk(x)5 ēxk

2 ēwxkr 2/81••• at short distances. A physical interpretatio
of ē and ēw will be given later.
6184 © 1999 The American Physical Society
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The vorticity v, with v5e i j ] iuj , is transported by the
fluid:

] tv1~u•“ !v2n“2v5F, ~3!

with F5e i j ] i f j . The correlation function of the vorticity
forcing term is thus

^F~x,t !F~y,s!&5G~x2y!d~ t2s! ~4!

with G52“

2Ĉ. In particular,G(0)52ēw . The fact that
the correlation function of the vorticity forcing is a gradia
will have physical consequences. Physically Eq.~3! means
that for smooth solutions any power of the vorticity, and
particular the enstrophy*(v2/2), is conserved in the absenc
of viscosity and forcing.

Since the inviscid limit is of course not under analytic
control, we have to make a few hypotheses which enc
Kraichnan’s scenario of inverse and direct cascades. Th
hypotheses are the following:~i! the velocity correlation
functions are assumed to be smooth at finite viscosity,
correlations of the velocity~without derivatives but at points
coinciding or not! exist in the inviscid limit; ~ii ! Galilean
invariant correlation functions, and in particular the veloc
structure functions which are correlations of differences
the velocity field, are stationary; and~iii ! in agreement with
Kraichnan’s picture, we demand that energy dissipat
anomalies~but not enstrophy dissipative anomalies! be ab-
sent.

The two first hypotheses are standard in the statist
approach to turbulence, while the third is special to two
mensions. It follows by demanding that the enstrophy d
sity V5v2/2 is finite in the inviscid limit, since the mea
enstrophy density times the viscosity is equal to the m
dissipation rate,n^V&5(n/2)^(“u)•(“u)&.

III. VELOCITY CORRELATIONS

Let us look at the two-point velocity correlation functio
^u(x)•u(0)&. As is well known,~cf. e.g., Ref.@1#!, it satis-
fies the following equation at finite viscosity:

] t^u~x!u~0!&2 1
2“x

k^~Duk!~x! ~Du!2~x!&

12n^~“u!~x!•~“u!~0!&5Ĉ~x!. ~5!

Here and in the following we shall denote velocity diffe
ences by (Duk)(x)[uk(x)2uk(0). Equation ~5! assumes
translation invariance, and uses the fact that the exte
force is Gaussian and white noise in time. Thanks to the fl
incompressibility the pressure drops out from this equati
The strategy consists of taking various limits of Eq.~5! in
various orders. Let us take first the limitx→0 followed by
the inviscid limit. In this limit the second term in Eq.~5!
vanishes due to the assumed smoothness of the correl
functions @hypothesis~i!#. Recall now hypothesis~iii ! con-
cerning the absence of energy dissipation. It in particu
means that

lim
n→0

lim
x→0

n^~“u!~x!•~“u!~0!&50. ~6!
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Therefore, the third term in Eq.~5! also vanishes. This im-
plies that in the inviscid limit the mean energy increases w
time according to

] tK u2

2 L
n50

5
1

2
Ĉ~0!5 ē. ~7!

Thus ^u2/2&n505 ēt up to a constant, andē is indeed the
energy injection rate. This is simply the obvious statem
that in the absence of energy dissipation, and/or in the
sence of friction or other processes by which the energy m
escape, all energy injected into the system is transfered to
fluid. It is expected to be transfered to the mode with t
smallest possible momentum, the so-called condensate@2#.
In particular, Eq.~7! shows that in absence of energy dis
pation a stationary state cannot be reached, although s
ture functions may converge at large times. This is one
portant difference between 2D and 3D turbulence.

Let us now assume that the two-point structure function
stationary, i.e.,] t^(Du)2(x)&50, @hypotheses~ii !#. From
Eq. ~5! one obtains, in the inviscid limit,

1
2 ¹x

k^~Duk!~x!~Du!2~x!&n5052ē2Ĉ~x!. ~8!

Integrating this using parity invariance gives

^~Duk!~x!~Du!2~x!&n5052„ēxk2Qk~x!…, ~9!

with “x•Q(x)5Ĉ(x). Equation~9! together with Eq.~12!
below fully determine the three point velocity correlatio
Although simple to derive, this equation seems not to ha
appeared in the existing literature.

Equation~9! in particular shows that the inverse ener
cascade takes place only if there is no dissipation anom
and thus only if the non-Galilean invariant velocity correl
tion functions do not reach a stationary state~in the absence
of friction!. Of course this is also a direct consequence of
physical fact that the energy condenses into the mode
smallest possible momemtum. As expected, Eq.~9! yields to
Kolmogorov’s scaling at large scale, since thereQk(x) van-
ishes, and Kraichnan’s scaling at small scale since„ēxk

2Qk(x)…;r 3 at short distance. But one can be a little mo
precise.

IV. VORTICITY CORRELATIONS

We now establish a formula for a mixed correlation fun
tion involving the vorticity and the velocity. Assuming tha
the structure functions of the velocity reach a stationary s
implies that correlations of the vorticity also become statio
ary. The stationarity condition for the two-point vorticit
functions, i.e.,] t^v(x)v(y)&50, implies

2 1
2“x

k^~Duk!~x! ~Dv!2~x!&12n^“v~x!•“v~0!&

5G~x!, ~10!

with (Dv)(x)5v(x)2v(0). As for the velocity correla-
tions, let us first take the limit of coincident pointx→0 at
finite viscosity. The first term in Eq.~10! then vanishes by
the hypotheses on the smoothness of the correlation fu
tions at finiten. Then taking the inviscid limit leads to
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lim
n→0

n^~“v!2~x!&5 1
2 G~0!5 ēw . ~11!

This is just the usual statement on enstrophy dissipa
anomaly. It is equal to the enstrophy dissipation rate and
enstrophy injection rate. Let us now take the limits in t
reversed order, the inviscid limit first. In that case the sec
term of Eq.~10! drops out, and one obtains

2 1
2“x

k^~Duk!~x!~Dv!2~x!&n505G~x!.

Assuming isotropy and parity invariance, this gives

^~Duk!~x!~Dv!2~x!&n5052
xk

r
S dĈ

dr
D ~r !

522ēwxk1O~r 2!. ~12!

Thus this correlation is universal in the~UV! direct cascade
regime. Its behavior and large scale depends on the way
forcing decreases at infinity. However, the fact that th
correlations decrease faster thanO(1/r ) at infinity is linked
to the fact the vorticity forcing correlation is a gradiant. T
ultraviolet behavior@Eq. ~12!# was also described in Ref.@5#.
This equation will be used to fix the coefficients of the i
frared and ultraviolet expansions of the three-point veloc
function left undetermined by Eq.~9!. But Eq. ~12! alone
would not have been enough to determine these asymp
expansions.

V. SCALING IN THE DIRECT AND INVERSE CASCADES

Let us first consider the short distance behavior in wh
the Kraichnan’s direct cascade takes place. This corresp
to a scale much smaller than the injection lengthx!Li .
There, Taylor expanding Eq.~9! gives

^~Duk!~x!~Du!2~x!&. 1
4 ēwxkr 2.

Assuming isotropy and parity invariance, the three-po
functions will be linear combinations of terms proportion
to xixjxk or (d i j xk1d jkxi1dkixj )r 2. Among these two pro-
portionality coefficients only one of them could be fixed u
ing Eq. ~9! only. However, the other coefficient is fixed b
the exact result for correlation functions mixing the vortic
and the velocity, see Eq.~12!. @One should use the relatio
3^(Duz)(Dv)2&54]z

2^(Duz)3&, where uz is the velocity
component in complex coordinatesz5x1 iy .# This then
gives, forx→0,

^~Dui !~x!~Duj !~x!~Duk!~x!&

.
ēw

8
„~d i j xk1d jkxi1dkixj !x222xixjxk

…. ~13!

For the transverse and longitudinal correlations, this
comes

^~Du! i
3&5^~Du! i~Du!'

2 &.1
ēw

8
r 3. ~14!
e
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The coefficientēw is equal to the mean enstrophy dissipati
rate. Thus, as expected, the three-point velocity functio
which depend only on the enstrophy injection rate, are u
versal in the direct cascade. Equation~14! may be called the
‘‘ 11/8 law’’ of the direct cascade.

Consider now the large distance behavior in which
Kraichnan’s inverse cascade takes place, i.e., scalex@Li .
There, Taylor expanding Eq.~9! yields

^~Duk!~x!~Du!2~x!&.2ēxk.

There are two possible terms for the three-point functio
(d i j xk1d jkxi1dkixj ) and (xixjxk)/r 2, whose coefficients
cannot be completely fixed using only Eq.~9!. But, again,
these will be fixed by looking at the vorticity correlatio
functions@Eq. ~12!#. One then obtains, forx→`,

^~Dui !~x!~Duj !~x!~Duk!~x!&.
ē

2
~d i j xk1d jkxi1dkixj !,

~15!

with ē the mean energy injection rate. Of course this giv
the ‘‘13/2 law’’ for the longitudinal statistics in the invers
cascade:

^~Du! i
3&53^~Du! i~Du!'

2 &.1
3ē

2
r . ~16!

This law and Kolmogorov’s scaling, as well as the existen
of a condensate in which the energy accumulates were
perimentally verified in Ref.@6#.

VI. INFLUENCE OF ANISOTROPY AND PARITY
SYMMETRY BREAKING

Anisotropy is irrelevent both in the ultraviolet and in th
infrared. Indeed, let us model anisotropy by incorporat
higher spin components in the forcing correlation functi
Ci j (x), assuming that they are still regular at the origin a
decrease at infinity. These components will be subdomin
in Eq. ~8! in both the ultraviolet~since the spinn component
will behave asr n) and the infrared~since they also vanish a
infinity!.

Suppose now that parity symmetry may be broken. Eq
tion ~9! is still valid ~since it only assumes translation invar
ance! except that Qk(x) is determined up toQk→Qk

1ek j] jJ(r ). This may change the ultraviolet scaling of th
transverse velocity correlations but not the scaling of
longitudinal correlationŝ (Du) i

3&, although the amplitude
may be modified.

VII. INFLUENCE OF FRICTION

In physical systems the infrared energy cascade will
minate at the largest possible scale at which the energy
escape. This could be mimicked by introducing a fricti
term in the Navier-Stokes equation, which then becomes

] tu
j1~u•“ !uj2n“2uj1

1

t
uj52“

j p1 f j , ~17!
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with t the friction relaxation time,t.0. Friction brings an-
other inviscid characteristic lengthL f into the problem:L f

.t3/2ē1/2. It increases as the friction is reduced, and one m
suppose thatLi!L f . This is the length at which the energ
is extracted. The friction term dominates over the advect
term at scales larger thanL f . So the direct cascade shou
take place at distancesx!Li!L f , and the inverse cascade
distancesLi!x!L f .

Under the same hypothesis as before, the mean en
density relaxes in the inviscid limit according to] t^u

2/2&
1(1/t)^u2&5 ē. It therefore reaches a stationary limit wit

^u2&5 ēt. The stationarity of the two-point structure fun
tion, i.e.,] t^(Du)2(x)&50, then gives, in the inviscid limit,

1

2
¹x

k^~Duk!~x!~Du!2~x!&1
1

t
^~Du!2~x!&52ē2Ĉ~x!.

~18!

Similarly, the stationarity of the vorticity correlations give
an equation similar to Eq.~10!, but with an extra term rep
resenting the friction. As for the case without friction, let
first take the limitx→0 at finite viscosity, and then the in
viscid limit. Let us denote the enstrophy injection rate
ēw5 1

2 G(0) and the enstrophy dissipation rate byêw

5 limn→0n^(“v)2(x)&. One then obtains ^v2&5t( ēw

2 êw), with ^v2&5 limn→0^v
2(x)&. This simply means tha

the enstrophy density is equal to the difference of the ens
phy injection and the enstrophy dissipation rates times
friction relaxation time. In particular, ift is finite, so is the
enstrophy density. As a consequence the vorticity two-po
correlation function̂ v(x)v(0)& will stay finite since it is
bounded bŷ v2&. Taking the limit in reversed order, firs
n→0, yields the inviscid stationary equation:

2
1

2
“x

k^~Duk!~x!~Dv!2~x!&1
2

t
^v~x!v~0!&5G~x!. ~19!

Let us look at small distances in which the friction shou
be irrelevent. LetV̄5 limx→0^v(x)v(0)&, which is expected
to be equal tot( ēw2 êw), although nothing prevents it from
being different. Since V̄,tēw , the second term on
the left-hand side of Eq.~19! cannot dominate, and
“x

k^(Duk)(x)(Dv)2(x)&.const asx→0. This implies that
the velocity three-point function̂(Du)3& scale asr 3. In
ys
t.
y

n

gy

o-
e

t

other words, Kraichnan’s scaling of the three-point functi
is robust to friction in the direct cascade, although the a
plitude may change.

More precisely, suppose thatV̄ is finite and nonvanish-
ing. Then the scaling formula~13! for the three-point func-
tion still holds, but withēw replaced by (ēwt2V̄)/t. Recall
that it is likely that (ēwt2V̄)/t is equal to the enstrophy
dissipation rateêw , meaning that in the presence of frictio
one simply has to replace the injection rate by the dissipa
rate in formula~13!. Moreover, the finiteness of the vorticit
two-point function at coincident points also implies th
^(Du)2(x)&.V̄/2r 2, since “x

2^(Du)2(x)&52^v(x)v(0)&.
This scaling may be broken only if V̄
5 limx→0^v(x)v(0)&n50 vanishes. It is worth specifying in
which scale domain this behavior will be valid. At finit
viscosity, there are various ultraviolet characteristic lengt
the usual dissipative lengthsr d.n3/4e1/4 and l d.n1/2ēw

21/6,
and another friction lengthl f.n1/2t1/2 above which friction
dominates over dissipation. Sincer d! l d. l f in the limit we
are considering,n→0 andt fixed, this scaling will be valid
for l d. l f!x!Li .

Let us now consider distances larger than the inject
length Li but smaller than the friction lengthL f . Then 2ē
2Ĉ(x).2ē, and the positivity argument cannot be applie
However, unless miraculous cancellations occur between
two terms on the left-hand side of Eq.~18! ~which would
mean that the domains in which advection or friction dom
nate intertwine!, the correlation^(Duk)(x)(Du)2(x)& will
still scale asr. Clearly this argument is less robust than t
one used for the short distance analysis.

VIII. CONCLUSIONS

Besides giving the expected formula for the three-po
velocity correlation functions, this short proof also indicat
that if the inverse cascade takes place, as experimen
verified, then, in absence of friction, the non-Galilean inva
ant velocity correlation functions do not become stationa
although structure functions do. However, it gives no hi
on how to decipher the behavior of the vorticity, one of t
main challanging problems of two dimensional turbulenc
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